32 research outputs found

    Predicting sense of community and participation by applying machine learning to open government data

    Get PDF
    Community capacity is used to monitor socio-economic development. It is composed of a number of dimensions, which can be measured to understand the possible issues in the implementation of a policy or the outcome of a project targeting a community. Measuring community capacity dimensions is usually expensive and time consuming, requiring locally organised surveys. Therefore, we investigate a technique to estimate them by applying the Random Forests algorithm on secondary open government data. Our research focuses on the prediction of measures for two dimensions: sense of community and participation. The most important variables for this prediction were determined. The variables included in the datasets used to train the predictive models complied with two criteria: nationwide availability; sufficiently fine-grained geographic breakdown, i.e. neighbourhood level. The models explained 77% of the sense of community measures and 63% of participation. Due to the low geographic detail of the outcome measures available, further research is required to apply the predictive models to a neighbourhood level. The variables that were found to be more determinant for prediction were only partially in agreement with the factors that, according to the social science literature consulted, are the most influential for sense of community and participation. This finding should be further investigated from a social science perspective, in order to be understood in depth

    Expertise-based peer selection in Peer-to-Peer networks

    Get PDF
    Peer-to-Peer systems have proven to be an effective way of sharing data. Modern protocols are able to efficiently route a message to a given peer. However, determining the destination peer in the first place is not always trivial. We propose a a message to a given peer. However, determining the destination peer in the first place is not always trivial. We propose a model in which peers advertise their expertise in the Peer-to-Peer network. The knowledge about the expertise of other peers forms a semantic topology. Based on the semantic similarity between the subject of a query and the expertise of other peers, a peer can select appropriate peers to forward queries to, instead of broadcasting the query or sending it to a random set of peers. To calculate our semantic similarity measure, we make the simplifying assumption that the peers share the same ontology. We evaluate the model in a bibliographic scenario, where peers share bibliographic descriptions of publications among each other. In simulation experiments complemented with a real-world field experiment, we show how expertise-based peer selection improves the performance of a Peer-to-Peer system with respect to precision, recall and the number of messages

    Models of Interaction as a Grounding for Peer to Peer Knowledge Sharing

    Get PDF
    Most current attempts to achieve reliable knowledge sharing on a large scale have relied on pre-engineering of content and supply services. This, like traditional knowledge engineering, does not by itself scale to large, open, peer to peer systems because the cost of being precise about the absolute semantics of services and their knowledge rises rapidly as more services participate. We describe how to break out of this deadlock by focusing on semantics related to interaction and using this to avoid dependency on a priori semantic agreement; instead making semantic commitments incrementally at run time. Our method is based on interaction models that are mobile in the sense that they may be transferred to other components, this being a mechanism for service composition and for coalition formation. By shifting the emphasis to interaction (the details of which may be hidden from users) we can obtain knowledge sharing of sufficient quality for sustainable communities of practice without the barrier of complex meta-data provision prior to community formation

    MultimediaN E-Culture demonstrator

    Get PDF
    The main objective of the MultimediaN E-Culture project is to demonstrate how novel semantic-web and presentation technologies can be deployed to provide better indexing and search support within large virtual collections of cultural-heritage resources. The architecture is fully based on open web standards, in particular XML, SVG, RDF/OWL and SPARQL. One basic hypothesis underlying this work is that the use of explicit background knowledge in the form of ontologies/vocabularies/thesauri is in particular useful in information retrieval in knowledge-rich domains

    Ranking Agent Statements for Building Evolving Ontologies

    No full text
    In this paper a methodology is described for ranking information received by different agents, based on previous experience with them. These rankings again are used for asking the right questions to the right agents. In this way agents can build up a reputation. The methods in this paper are strongly influenced on human heuristics regarding the assignment of confidence ratings on humans. The methods provide a solution to current problems with ontologies: (1) handling contradicting and sloppy information, (2) efficient network use instead of broadcasting information and (3) dealing with ontological drift
    corecore